Abstract

Electron transport and optical properties of a single molecule in contact with conductive ma-
terials have attracted considerable attention because of their scientific importance and potential
applications. With the recent progress in experimental techniques, especially by virtue of scanning
tunneling microscope (STM)-1nduced light emission, it has become possible to investigate single-
molecule properties at subnanometer spatial resolution. Here we present a formulations of single-
molecule electroluminescence driven by electron transfer between a molecule and metal electrodes
and of current driven by external illumination based on a many-body state representation of the
molecule. The effects of intramolecular Coulomb interaction on conductance and luminescence
spectra are 1nvestigated using the nonequilibrium Hubbard Green’s function technique combined
with first-principles calculations. The developed theory provides a unified description of the elec-
tron transport and optical properties of a single molecule in contact with metal electrodes driven
out of equilibrium, and thereby, i1t contributes to a microscopic understanding of optoelectronic
conversion in single molecules on solid surfaces and in nanometer-scale junctions.

Hubbard NEGF Formulation

We consider a junction consisting of a molecule coupled to two electrodes and to a continuum of ra-
diation field modes. Many-body (vibronic) states of the i1solated molecule are chosen as a basis in the
molecular subspace
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Electron flux /f from electrode /K to the molecule and photon flux .J;,;, from the molecule into radiation
field modes calculated from a generalization of the celebrated Meir-Wingreen expression
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Here o7~ and ‘7;1 are lesser and greater projections of the electron self-energies due to coupling to the
electrode K and the radiation field. GS are lesser and greater projections of the molecular nonequilib-
rium Hubbard Green function
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where X 3,5, = |S1)(S2| denotes the Hubbard (projection) operator. Within the Born-Oppenheimer
approximation
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Dressing K with Franck-Condon overlap integrals yields generalized Franck-Condon factor
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Green function is obtained by self-consistent solution of the modified Dyson equation.
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Details of the procedure are given in Refs. [1, 2].
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Bias-Induced Electroluminescence

We apply the Hubbard NEGF method to study effects of exciton binding energy on conductance and
luminescence spectra. The importance of intramolecular Coulomb interaction 1s emphasized in ex-
plaining experimental data for a single phthalocyanine molecule, and the microscopic mechanism for

electronic excitation of the molecule in STM-LE processes 1s proposed. Details of the study are given
in Ref. [3].
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Figure 1: Schematic picture and proposed mechanism of current-driven electroluminescence for a single phthalocyanine
molecule adsorbed on a few atomic layers of insulator grown on a metal substrate.
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Figure 2: Luminescence spectra (left) and differential conductance dI/dV (right) obtained by STM-LE measurement (red
line) and numerical calculation result (blue line).

Photo-Induced Current

We apply the Hubbard NEGF for analysis of photocurrent in nitroazobenzene molecular junction. De-
tails of the consideration are given in Ref. [4].
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Figure 3: Schematic picture of the photo-induced current in molecular junction (top) and calculated (left bottom) and
experimental (right bottom) measurements of photocurrent vs. photon wavelength.
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Figure 4: Temperature dependence of photo- and dark currents in biased molecular junction, V;; = 0.02 V. Shown are (a)
experimental and (b) computational results, (¢) proposed mechanism, and (d) temperature dependence of populations of the
neutral ground and neutral excited states.
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