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Abstract
We introduce an auxiliary quantum master equation (QME)

dual fermion (Aux-DF) method and argue that it presents a con-
venient way to describe steady states of correlated impurity mod-
els. The scheme yields an expansion around a reference that is
much closer to the true nonequilibrium state than that in the origi-
nal dual fermion (DF) formulation. In steady-state situations, the
scheme is numerically inexpensive and avoids time propagation.
The Anderson impurity model (AIM) is used to test the approach
against numerically exact benchmarks: time-dependent density
matrix renormalization group (td-DMRG) and continuous time
quantum Monte Carlo (CT-QMC).

Original DF Formulation
Originally, the DF method was formulated for equilibrium lattice
models as a way to account for nonlocal correlations beyond DMFT
[1]. A nonequilibrium version of the method (DF-inspired superper-
turbation theory) was later proposed in Ref. [2] as a way to solve im-
purity transport problems.

At the heart of the approach is finite reference system, which in-
cludes the molecule and a finite number of states representing leads.
The reference problem can be solved exactly. DF is an expansion ac-
counts for the difference between the true system-lead hybridization
and its approximation within the reference system.
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g12 and Γ13;24 are the single-particle GF and the two-particle vertex
of the reference system. The single-particle GF of the molecule is
obtained from
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Figure 1: (a) original and reference systems; (b) time evolution of
the level occupation after coupling to baths (no bias). From Ref. [2].

Deficiencies of the Original DF
Where the steady-state is of interest, the original DF is problematic:

• Few sites representing bath yield hybridization function signifi-
cantly different from the true one

• Finite reference system → periodic solution, so that reaching the
steady-state requires long time propagation
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Figure 2: Time evolution of the level occupation after coupling to
baths (biased junction). From Ref. [3]

Aux-DF Method

In Ref. [3] we proposed to introduce infinite reference system
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Figure 3: (a) AIM and corresponding reference systems in
(b) DF and (c) Aux-DF methods. From Ref. [3].

and to solve it using auxiliary QME

dρS(t)

dt
= −iLρS(t)

GF and vertex for the reference system are simulated using the quan-
tum regression relation〈

Tc Â(τ1) B̂(τ2) . . . Ẑ(τn)
〉
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Here ρS(0) is the steady-state density matrix of the extended system,
U(ti, ti−1) is the Liouville space evolution operator and times ti are
ordered so that tn > tn−1 > . . . > t2 > t1 > 0. Oi is the Liouville
space super-operator corresponding to one of operators Â . . . Ẑ whose
time is i-th in the ordering. It acts from the left (right) for the opera-
tor on the forward (backward) branch of the contour. The steady-state
density matrix is found as a right eigenvector |R0� corresponding to
the Liouvillian eigenvalue λ0 = 0.

Using spectral decomposition of the Liouvillian, the evolution oper-
ator can be presented in its eigenbasis as

U(ti, ti−1) =
∑
γ

|Rγ � e−iλγ(ti−ti−1) � Lγ|.

Once single- (g) and two-particle (g(2)) GFs of the reference system
are known, the vertex required in DF formulation is given by
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Numerical Benchmarks for the Aux-DF

We apply the Aux-DF method to the AIM
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Figure 4: Current voltage characteristics simulated within QME
(dotted line), zero (dashed line) and first (solid line) order Aux-DF

approaches. Circles and squares represent respectively tdDMRG and
CT-QMC results. From Ref. [3].
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Figure 5: Steady-state transport characteristics vs. gate voltage at
fixed bias. Shown are (a) population and (b) current vs. level

position, as calculated from QME (dotted line); and zero (dashed
line) and first (solid line) order Aux-DF approaches. Circles (red)

represent results of numerically exact td-DMRG simulations. From
Ref. [3].
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Figure 6:. Spectral function of Anderson impurity model. Shown are
results of Aux-DF simulations for (a) The spectral function of the
unbiased (solid line) and biased (dotted line) junction; and (b) The

spectral function vs. energy and applied bias. From Ref. [3].

Conclusions
We introduce Aux-DF method for simulation of strongly correlated
open nonequilibrium systems. Finite reference reference system of
the original DF formulation is substituted with an infinite open system
which is solved using auxiliary QME. This allows more realistic treat-
ment of dissipation and yields information on nonequilibirum state of
the system. Aux-DF allows to avoid long time propagations of the
original DF and is advantageous in treating steady states. AIM is used
as a test model and compared with numerically exact td-DMRG and
CT-QMC results. Aux-DF is shown to be quite accurate and relatively
inexpensive numerically.
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