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Abstract
We introduce diagrammatic technique for Hubbard nonequilibrium Green func-

tions (NEGF). Within the technique intra-system interactions are taken into account
exactly, while molecular coupling to contacts is used as a small parameter in per-
turbative expansion. We demonstrate the viability of the approach with numerical
simulations for a generic junction model of quantum dot coupled to two electron
reservoirs.

Introduction
The nonequilibrium Green function (NEGF) technique is the usual choice
in ab-initio simulations in the field of molecular electronics. But in many
cases of practical importance, especially in treating strong intra-molecular
interactions, a nonequilibrium theory based on the many-body states of the
isolated molecule is preferable.

The Hubbard NEGF utilizes Hubbard operators X̂S1S2
≡ |S1〉 〈S2|, where

|S1,2〉 are many-body states of the system. The Hubbard Green function is
defined as

G(S1S2),(S3S4)(τ, τ
′) ≡ −i

〈
Tc X̂S1S2

(τ ) X̂
†
S3S4

(τ ′)
〉

(1)

Since for quasiparticle excitation, ĉi =
∑
S1,S2

〈S1| ĉi |S2〉 X̂S1S2
, Hub-

bard NEGF yields spectral decomposition of the excitations into underly-
ing transitions between many-body states, and knowing it one always can
reconstruct the NEGF

Gij(τ, τ
′) = −i

〈
Tc ĉi(τ ) ĉ

†
j(τ
′)
〉

(2)
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Figure 1: NEGF uses quasiparticle states while Hubbard Green functions utilize many-
body states

We present first nonequilibrium diagrammatic technique applicable to
multi-time correlation functions of Hubbard operators. The formulation
is an extension of equilibrium considerations for strongly correlated lattice
models. Contrary to standard diagrammatic techniques it utilizes system-
bath coupling as a small parameter of expansion with intra-system interac-
tions taken into account exactly.

Diagrammatic technique for NEGF is based on Wick’s theorem which
relies on commutation relations [ĉi; ĉj

†]± = δij. The corresponding com-
mutators for Hubbard operators are

[X̂S1S2
; X̂S3S4

]± = δS2,S4
X̂S1S3

± δS1,S3
X̂S4S2

(3)

The commutator is an operator (not a number), which makes standard
Wick’s theorem inapplicable. Nevertheless, a variant of Wick’s theorem
for equilibrium systems was developed [2, 4]. Here, we generalize the con-
sideration to non-equilibrium systems.

Diagrammatic Technique for Hubbard NEGF

We consider generic model of a molecular junction consisting of a molecule
M coupled to two contacts L and R:

Ĥ = ĤM +
∑

K=L,R

ĤK + V̂ , ĤM =
∑
S

ESX̂SS

ĤK =
∑
k∈K

εkĉ
†
kĉk, V̂ =

∑
K=L,R

∑
k∈K

∑
m∈M

(Vkm ĉ
†
k X̂m + H.c.)

(4)

Here m are single electron transitions between many-body states of the
molecule.

Figure 2: Graphical representation of the modified Dyson equation, Eqs. 6

Perturbative expansion of the Hubbard Green function (1) in system-bath
interaction V̂ is

G(S1S2),(S3S4)(τ, τ
′) =

∞∑
n=0

(−i)n+1

n!

∫
c
dτ1...

∫
c
dτn〈

Tc X̂S1S2
(τ )X̂

†
S3S4

(τ ′) V̂ (τ1)...V̂ (τn)
〉

0

(5)

Decoupling molecular and contacts degrees of freedom and following a
set of contraction rules formulated in Ref. [1] leads to a modified Dyson
equation for the Hubbard Green function (see Fig. 2)

Gmm′(τ, τ
′) =

∑
m1

∫
c
dτ1gmm1(τ, τ1)Pm1m′(τ1, τ

′)

gmm′(τ, τ
′) = g

(0)
mm′(τ, τ

′) +
∑
m1,m2

∫
c
dτ1

∫
c
dτ2

g
(0)
mm′(τ, τ1)Σm1,m2(τ1, τ2)gm2,m′(τ2, τ

′)

(6)

In the resulting diagrams one can distinguish three types of contributions:
self-energy Σ(τ, τ ′), spectral weight F (τ ) (circle in Fig. 2) and vertex
∆(τ, τ ′) (triangle in Fig. 2). Self-energies due to coupling to the contacts

σKmm′(τ, τ
′) =

∑
k∈K

Vmk gk(τ, τ ′)Vkm′ (7)

play a role of time-nonlocal interaction in the expansion.

Quantum Dot Model

Molecular (quantum dot) subspace is spanned by four many-body states:
|0〉 ≡ |0, 0〉 , |a〉 ≡ 1, 0, |b〉 ≡ |0, 1〉 , |2〉 ≡ |1, 1〉. Their energies are:
E0 = 0, Ea = εa, Eb = εb, and E2 = εa + εb + U . Correspondingly, there
are four single-electron transitions: |0〉 〈a| , |b〉 〈2| , |0〉 〈b| , |a〉 〈2|

Performing expansion up to second order in molecular coupling to con-
tacts for the Hubbard Green function Gmm′ leads to the set of diagrams
shown in Fig. 5

Figure 3: Non-dressed diagrams up to second order in molecule-contacts coupling for
Fermi-type Hubbard Green function Gmm′. Parts are spectral weight F (circle, top panel),
vertex ∆ (triangle, middle panel), and self-energy Σ (bottom panel). Solid line represents
Fermi type Green function g(0)m , wavy line is the interaction (7), dashed line represents
Bose type Green function for two-particle scattering d(0)02 , and oval stands for the correla-
tion function C(0).

Numerical Results
We start from a non-interacting case, U = 0, where exact solution is known
from the usual NEGF.
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Figure 4: Non-degenerate two-level system. T = 300K, εa = −0.5eV, εb = 0.5eV, U =
0,ΓKaa = ΓKbb = 0.1eV and ΓKab = ΓKba = 0. Top graphs show Green function
Im(G<

11(E),−Im(G>
44(E) (main panel), Im(G<

33(E) (top inset), and −ImG>
11(E) (bottom

inset). Middle graphs show correlation function C>
31,13(E) (rightmost peak in the main

panel), C>
12,21(E) (top inset or leftmost peak in the main panel), and C>

33,33(E) (bottom
inset or central peak in the main panel). Bottom graph show many-body spectral function,
i
∑

m(G>
mm(E)−G<

mm(E));
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Figure 5: Non-interacting junction. Exact NEGF results (solid line, red) are compared
with diagrammatic perturbation theory (PT) (dashed line, blue). Shown are state probabil-
ities (top panels) and current (bottom panels) vs. applied bias Vsd for non-degenerate (left)
and degenerate (right) cases. Inset in the top right panel shows coherence vs. applied bias.

We now consider regime of pair electron tunneling in junctions (negative
U model).

Figure 6: Diagrams responsible for pair and cotunneling transport in the negative-U
model
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Figure 7: Pair electron tunneling in junction. Diagrammatic perturbation theory (PT)
simulations are compared with the rate equation results [3]. Parameters are εa = εb = 2eV
and U = −3.8eV

Conclusions
We present a nonequilibrium flavor of diagrammatic technique for Hubbard
Green functions, and illustrate the viability of such approach with several
numerical examples of transport in molecular junctions. This technique is
suitable for description of nonequilibrium steady-states in junctions and is
applicable to multi-time correlation functions
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