UCSD Publications

  1. BulletF.Chen, Y.Gao, and M.Galperin. Molecular heat engines: Quantum coherence effects. Entropy 19, 472 (2017).

  2. BulletK.Miwa, F.Chen, and M.Galperin. Towards noise simulation in interacting nonequilibrium systems strongly coupled to baths. Sci. Rep. 7, 9735 (2017).

  3. BulletM.Galperin. Photonics and spectroscopy in nanojunctions: A theoretical insight. Chem. Soc. Rev. 46, 4000-4019 (2017) [Review].

  4. BulletF.Chen, M.A.Ochoa, and M.Galperin. Nonequilibrium diagrammatic technique for Hubbard Green functions. J. Chem. Phys. 146, 092301 (2017).

  5. BulletY.Gao, M.Galperin, and A.Nitzan. On the widths of Stokes lines in Raman scattering from molecules adsorbed at metal surfaces and in molecular conduction junctions. J. Chem. Phys. 144, 244114 (2016).

  6. BulletY.Gao and M.Galperin. Simulation of optical response functions in molecular junctions. J. Chem. Phys. 144, 244106 (2016).

  7. BulletY.Gao and M.Galperin. Optical spectroscopy of molecular junctions: Nonequilibrium Green’s functions perspective. J. Chem. Phys. 144, 174113 (2016).

  8. BulletS.Dey, M.Banik, E.Hulkko, K.Rodriguez, V.A.Apkarian, M.Galperin, and A.Nitzan. Observation and analysis of Fano-like lineshapes in the Raman spectra of molecules adsorbed at metal interfaces.             Phys. Rev. B 93, 035411 (2016).

  9. BulletM.Esposito, M.A.Ochoa, and M.Galperin. Nature of heat in strongly coupled open quantum systems. Phys. Rev. B 92, 235440 (2015).

  10. BulletM.Galperin and A.Nitzan. Nuclear dynamics at molecule-metal interfaces: A pseudoparticle perspective. J. Phys. Chem. Lett. 6, 4898-4903 (2015).

  11. BulletM.Esposito, M.A.Ochoa, and M.Galperin. Efficiency fluctuations in quantum thermoelectric devices. Phys. Rev. B 91, 115417 (2015).

  12. BulletM.Esposito, M.A.Ochoa, and M.Galperin. Quantum thermodynamics: A nonequilibrium Green’s function approach. Phys. Rev. Lett. 114, 080602 (2015) [Editors’ Suggestion].

  13. BulletM.A.Ochoa, Y.Selzer, U.Peskin, and M.Galperin. Pump-probe noise spectroscopy of molecular junctions. J. Phys. Chem. Lett. 6, 470-476 (2015) [ACS LiveSlides].

  14. BulletM.Galperin, M.A.Ratner, and A.Nitzan. Comment on “Frequency-domain stimulated and spontaneous light emission signals at molecular junctions”  [J. Chem. Phys. 141, 074101 (2014)]. J. Chem. Phys. 142, 137101 (2015) [see also On optical spectroscopy of molecular junctions. arXiv:1503.03890 (2015)]

  15. BulletA.Baratz, A.J.White, M.Galperin, and R.Baer. The effects of electromagnetic coupling on conductance switching of a gated tunnel junction. J. Phys. Chem. Lett. 5, 3545-3550 (2014).

  16. BulletM.A.Ochoa, M.Galperin, and M.A.Ratner. A non-equilibrium equation-of-motion approach to quantum transport utilizing projection operators. J. Phys.: Condens. Matter 26, 455301 (2014).

  17. BulletA.J.White, M.A.Ochoa, and M.Galperin. Non-equilibrium atomic limit for transport and optical response of molecular junctions. J. Phys. Chem. C 118, 11159-11173 (2014) [Feature Article].

  18. BulletA.J.White, S.Tretiak, and M.Galperin. Raman scattering in molecular junctions: A pseudoparticle formulation. Nano Lett. 14, 699-703 (2014).

  19. BulletA.J.White, U.Peskin, and M.Galperin. Coherence in charge and energy transfer in molecular junctions. Phys. Rev. B 88, 205424 (2013).

  20. BulletA.J.White, M.Galperin, B.Apter, and B.D.Fainberg. Non-Markovian theory of collective plasmon-molecule excitations in nanojunctions combined with classical electrodynamic simulations. Proc. SPIE 8827, 88270C (2013).

  21. BulletD.Rai and M.Galperin. Electrically driven spin currents in DNA. J. Phys. Chem. C 117, 13730-13737 (2013).

  22. BulletA.Baratz, M.Galperin, and R.Baer. Gate-induced intramolecular charge transfer in a tunnel junction: A nonequilibrium analysis. J. Phys. Chem. C 117, 10257-10263 (2013); J. Phys. Chem. Lett. 117, 18279 (2013).

  23. BulletA.J.White, A.Migliore, M.Galperin, and A.Nitzan. Quantum transport with two interacting conduction channels. J. Chem. Phys. 138, 174111 (2013).

  24. BulletB.O.Jahn, H.Ottosson, M.Galperin, and J.Fransson. Organic single molecular structures for light induced spin-pump devices. ACS Nano 7, 1064-1071 (2013).

  25. BulletM.Banik, V.A.Apkarian, T.-H.Park, and M.Galperin. Raman staircase in charge transfer SERS at the junction of fusing nanospheres. J. Phys. Chem. Lett. 4, 88-92 (2013).

  26. BulletM.Galperin and A.Nitzan. Cooperative effects in inelastic tunneling. J. Phys. Chem. B 117, 4449-4453 (2013).

  27. BulletA.J.White, M.Sukharev, and M.Galperin. Molecular nanoplasmonics: Self-consistent electrodynamics in current-carrying junctions. Phys. Rev. B 86, 205324 (2012).

  28. BulletA.J.White, B.D.Fainberg, and M.Galperin. Collective plasmon-molecule excitations in nanojunctions: Quantum consideration. J. Phys. Chem. Lett. 3, 2738-2743 (2012).

  29. BulletT.-H.Park and M.Galperin. Time-dependent response to optical excitation in molecular junctions.  Phys. Scripta T 151, 014038 (2012).

  30. BulletD.Rai and M.Galperin. Spin inelastic currents in molecular ring junctions. Phys. Rev. B 86, 045420 (2012).

  31. BulletA.J.White and M.Galperin. Inelastic transport: a pseudoparticle approach. Phys. Chem. Chem. Phys. 14, 13809-13819 (2012).

  32. BulletM.Galperin and A.Nitzan. Molecular optoelectronics: the interaction of molecular conduction junctions with light. Phys. Chem. Chem. Phys. 14, 9421-9438 (2012) [Perspective].

  33. BulletM.Oren, M.Galperin, and A.Nitzan. Raman scattering from molecular conduction junctions: Charge transfer mechanism. Phys. Rev. B 85, 115435 (2012).

  34. BulletU.Peskin and M.Galperin. Coherently controlled molecular junctions. J. Chem. Phys. 136, 044107 (2012).

  35. BulletT.-H.Park and M.Galperin. Self-consistent full counting statistics of inelastic transport. Phys. Rev. B 84, 205450 (2011).

  36. BulletM.Galperin and A.Nitzan. Raman scattering from biased molecular conduction junctions: The electronic background and its temperature.  Phys. Rev. B 84, 195325 (2011).

  37. BulletT.-H.Park and M.Galperin. Charge transfer contribution to surface-enhanced Raman scattering in a molecular junction: Time-dependent correlations. Phys. Rev. B 84, 075447 (2011).

  38. BulletM.Galperin and A.Nitzan. Raman Scattering and Electronic Heating in Molecular Conduction Junctions. J. Phys. Chem. Lett. 2, 2110-2113 (2011).

  39. BulletT.-H.Park and M.Galperin. Correlation between Raman scattering and conductance in a molecular junction. Europhys. Lett. 95, 27001 (2011).

  40. BulletJ.Fransson and M.Galperin. Spin Seebeck coefficient of a molecular spin pump. Phys. Chem. Chem. Phys. 13, 14350-14357 (2011).

  41. BulletB.D.Fainberg, M.Sukharev, T.-H.Park, and M.Galperin. Light-induced current in molecular junctions: Local field and non-Markov effects. Phys. Rev. B 83, 205425 (2011).

  42. BulletM.Esposito and M.Galperin. Self-consistent quantum master equation approach to molecular transport. J. Phys. Chem. C 114, 20362-20369 (2010).

  43. BulletM.Sukharev and M.Galperin. Transport and optical response of molecular junctions driven by surface plasmon polaritons. Phys. Rev. B 81, 165307 (2010).

  44. BulletJ.Fransson and M.Galperin. Inelastic scattering and heating in a molecular spin pump. Phys. Rev. B 81, 075311 (2010) [Editors’ Suggestion].

  45. BulletM.Galperin, K.Saito, A.V.Balatsky, and A.Nitzan. Cooling mechanisms in molecular conduction junctions. Phys. Rev. B 80, 115427 (2009).

  46. BulletM.Esposito and M.Galperin. Transport in molecular states language: Generalized quantum master equation approach. Phys. Rev. B 79, 205303 (2009).

  47. BulletM.Galperin, M.A.Ratner, and A.Nitzan. Raman Scattering from Nonequilibrium Molecular Conduction Junctions. Nano Lett. 9, 758-762 (2009).

  48. BulletM.Galperin, M.A.Ratner, and A.Nitzan. Raman scattering in Current-Carrying Molecular Junctions. J. Chem. Phys. 130, 144109 (2009).

  49. BulletS.Yeganeh, M.A.Ratner, M.Galperin, and A.Nitzan. Transport in State Space: Voltage-Dependent Conductance Calculations of Benzene-1,4-dithiol. Nano Lett. 9, 1770-1774 (2009).

  50. BulletM.Galperin, A.Nitzan, and M.A.Ratner. Inelastic transport in the Coulomb blockade regime within a nonequilibrium atomic limit. Phys. Rev. B 78, 125320 (2008).